3.2.83 \(\int \frac {\cos ^{\frac {5}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx\) [183]

Optimal. Leaf size=112 \[ \frac {4 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac {5 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a^2 d}-\frac {5 \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac {\cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2} \]

[Out]

4*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/d-5/3*(cos(1/2*d*x
+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/d-1/3*cos(d*x+c)^(3/2)*sin(d*x+c
)/d/(a+a*cos(d*x+c))^2-5/3*sin(d*x+c)*cos(d*x+c)^(1/2)/a^2/d/(1+cos(d*x+c))

________________________________________________________________________________________

Rubi [A]
time = 0.12, antiderivative size = 112, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {2844, 3056, 2827, 2720, 2719} \begin {gather*} -\frac {5 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a^2 d}+\frac {4 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac {5 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 a^2 d (\cos (c+d x)+1)}-\frac {\sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^(5/2)/(a + a*Cos[c + d*x])^2,x]

[Out]

(4*EllipticE[(c + d*x)/2, 2])/(a^2*d) - (5*EllipticF[(c + d*x)/2, 2])/(3*a^2*d) - (5*Sqrt[Cos[c + d*x]]*Sin[c
+ d*x])/(3*a^2*d*(1 + Cos[c + d*x])) - (Cos[c + d*x]^(3/2)*Sin[c + d*x])/(3*d*(a + a*Cos[c + d*x])^2)

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2844

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(b*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n - 1)/(a*f*(2*m + 1))), x] + Dist[1/
(a*b*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 2)*Simp[b*(c^2*(m + 1) + d^2*(n -
1)) + a*c*d*(m - n + 1) + d*(a*d*(m - n + 1) + b*c*(m + n))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e,
f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ
[2*m, 2*n] || (IntegerQ[m] && EqQ[c, 0]))

Rule 3056

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x]
)^n/(a*f*(2*m + 1))), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n -
1)*Simp[A*(a*d*n - b*c*(m + 1)) - B*(a*c*m + b*d*n) - d*(a*B*(m - n) + A*b*(m + n + 1))*Sin[e + f*x], x], x],
x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ
[m, -2^(-1)] && GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])

Rubi steps

\begin {align*} \int \frac {\cos ^{\frac {5}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx &=-\frac {\cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}-\frac {\int \frac {\sqrt {\cos (c+d x)} \left (\frac {3 a}{2}-\frac {7}{2} a \cos (c+d x)\right )}{a+a \cos (c+d x)} \, dx}{3 a^2}\\ &=-\frac {5 \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac {\cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}-\frac {\int \frac {\frac {5 a^2}{2}-6 a^2 \cos (c+d x)}{\sqrt {\cos (c+d x)}} \, dx}{3 a^4}\\ &=-\frac {5 \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac {\cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}-\frac {5 \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{6 a^2}+\frac {2 \int \sqrt {\cos (c+d x)} \, dx}{a^2}\\ &=\frac {4 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac {5 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a^2 d}-\frac {5 \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac {\cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 2.94, size = 319, normalized size = 2.85 \begin {gather*} \frac {\cos ^4\left (\frac {1}{2} (c+d x)\right ) \left (\frac {4 i \sqrt {2} e^{-i (c+d x)} \left (12 \left (1+e^{2 i (c+d x)}\right )+12 \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \, _2F_1\left (-\frac {1}{4},\frac {1}{2};\frac {3}{4};-e^{2 i (c+d x)}\right )+5 e^{i (c+d x)} \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};-e^{2 i (c+d x)}\right )\right )}{d \left (-1+e^{2 i c}\right ) \sqrt {e^{-i (c+d x)} \left (1+e^{2 i (c+d x)}\right )}}-\frac {\sqrt {\cos (c+d x)} \left (20 \cos \left (\frac {1}{2} (c-d x)\right )+16 \cos \left (\frac {1}{2} (3 c+d x)\right )+9 \cos \left (\frac {1}{2} (c+3 d x)\right )+3 \cos \left (\frac {1}{2} (5 c+3 d x)\right )\right ) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \sec ^3\left (\frac {1}{2} (c+d x)\right )}{2 d}\right )}{3 a^2 (1+\cos (c+d x))^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^(5/2)/(a + a*Cos[c + d*x])^2,x]

[Out]

(Cos[(c + d*x)/2]^4*(((4*I)*Sqrt[2]*(12*(1 + E^((2*I)*(c + d*x))) + 12*(-1 + E^((2*I)*c))*Sqrt[1 + E^((2*I)*(c
 + d*x))]*Hypergeometric2F1[-1/4, 1/2, 3/4, -E^((2*I)*(c + d*x))] + 5*E^(I*(c + d*x))*(-1 + E^((2*I)*c))*Sqrt[
1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d*x))]))/(d*E^(I*(c + d*x))*(-1 + E^(
(2*I)*c))*Sqrt[(1 + E^((2*I)*(c + d*x)))/E^(I*(c + d*x))]) - (Sqrt[Cos[c + d*x]]*(20*Cos[(c - d*x)/2] + 16*Cos
[(3*c + d*x)/2] + 9*Cos[(c + 3*d*x)/2] + 3*Cos[(5*c + 3*d*x)/2])*Csc[c/2]*Sec[c/2]*Sec[(c + d*x)/2]^3)/(2*d)))
/(3*a^2*(1 + Cos[c + d*x])^2)

________________________________________________________________________________________

Maple [A]
time = 0.17, size = 257, normalized size = 2.29

method result size
default \(\frac {\sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (24 \left (\cos ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+10 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+24 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-38 \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+15 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right )}{6 a^{2} \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(257\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(5/2)/(a+a*cos(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

1/6*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(24*cos(1/2*d*x+1/2*c)^6+10*(sin(1/2*d*x+1/2*c)^2)
^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^3+24*(sin(1/
2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*cos(1/2*d*x+1/2*c)^3*EllipticE(cos(1/2*d*x+1/2*c),2^(1
/2))-38*cos(1/2*d*x+1/2*c)^4+15*cos(1/2*d*x+1/2*c)^2-1)/a^2/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/
2)/cos(1/2*d*x+1/2*c)^3/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)/(a+a*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^(5/2)/(a*cos(d*x + c) + a)^2, x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.12, size = 268, normalized size = 2.39 \begin {gather*} -\frac {2 \, {\left (6 \, \cos \left (d x + c\right ) + 5\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 5 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{2} - 2 i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{2} + 2 i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 12 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{2} - 2 i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 12 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{2} + 2 i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{6 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)/(a+a*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

-1/6*(2*(6*cos(d*x + c) + 5)*sqrt(cos(d*x + c))*sin(d*x + c) + 5*(-I*sqrt(2)*cos(d*x + c)^2 - 2*I*sqrt(2)*cos(
d*x + c) - I*sqrt(2))*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 5*(I*sqrt(2)*cos(d*x + c)^2
+ 2*I*sqrt(2)*cos(d*x + c) + I*sqrt(2))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 12*(-I*sqr
t(2)*cos(d*x + c)^2 - 2*I*sqrt(2)*cos(d*x + c) - I*sqrt(2))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0,
cos(d*x + c) + I*sin(d*x + c))) + 12*(I*sqrt(2)*cos(d*x + c)^2 + 2*I*sqrt(2)*cos(d*x + c) + I*sqrt(2))*weierst
rassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*co
s(d*x + c) + a^2*d)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(5/2)/(a+a*cos(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)/(a+a*cos(d*x+c))^2,x, algorithm="giac")

[Out]

integrate(cos(d*x + c)^(5/2)/(a*cos(d*x + c) + a)^2, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\cos \left (c+d\,x\right )}^{5/2}}{{\left (a+a\,\cos \left (c+d\,x\right )\right )}^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^(5/2)/(a + a*cos(c + d*x))^2,x)

[Out]

int(cos(c + d*x)^(5/2)/(a + a*cos(c + d*x))^2, x)

________________________________________________________________________________________